Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell Rep Med ; 5(4): 101479, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38518770

ABSTRACT

Immune checkpoint blockade (ICB) with PD-1/PD-L1 inhibition has revolutionized the treatment of non-small cell lung cancer (NSCLC). Durable responses, however, are observed only in a subpopulation of patients. Defective antigen presentation and an immunosuppressive tumor microenvironment (TME) can lead to deficient T cell recruitment and ICB resistance. We evaluate intratumoral (IT) vaccination with CXCL9- and CXCL10-engineered dendritic cells (CXCL9/10-DC) as a strategy to overcome resistance. IT CXCL9/10-DC leads to enhanced T cell infiltration and activation in the TME and tumor inhibition in murine NSCLC models. The antitumor efficacy of IT CXCL9/10-DC is dependent on CD4+ and CD8+ T cells, as well as CXCR3-dependent T cell trafficking from the lymph node. IT CXCL9/10-DC, in combination with ICB, overcomes resistance and establishes systemic tumor-specific immunity in murine models. These studies provide a mechanistic understanding of CXCL9/10-DC-mediated host immune activation and support clinical translation of IT CXCL9/10-DC to augment ICB efficacy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Dendritic Cells , Tumor Microenvironment , Chemokine CXCL9
2.
J Immunother Cancer ; 11(9)2023 09.
Article in English | MEDLINE | ID: mdl-37730274

ABSTRACT

BACKGROUND: Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS: Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS: ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS: CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Lung Neoplasms/drug therapy , Immunotherapy , Tumor Microenvironment , Chemokine CCL21
3.
Cancer Discov ; 12(4): 1046-1069, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34930786

ABSTRACT

Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE: Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mutation , Neoplasm Recurrence, Local/drug therapy , Oncogenes , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
4.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33853830

ABSTRACT

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Subject(s)
AMP-Activated Protein Kinase Kinases/deficiency , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , Granulocytes/immunology , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Myeloid-Derived Suppressor Cells/immunology , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Epidemiology ; 32(3): 315-326, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33591048

ABSTRACT

BACKGROUND: Although injuries experienced during hurricanes and other tropical cyclones have been relatively well-characterized through traditional surveillance, less is known about tropical cyclones' impacts on noninjury morbidity, which can be triggered through pathways that include psychosocial stress or interruption in medical treatment. METHODS: We investigated daily emergency Medicare hospitalizations (1999-2010) in 180 US counties, drawing on an existing cohort of high-population counties. We classified counties as exposed to tropical cyclones when storm-associated peak sustained winds were ≥21 m/s at the county center; secondary analyses considered other wind thresholds and hazards. We matched storm-exposed days to unexposed days by county and seasonality. We estimated change in tropical cyclone-associated hospitalizations over a storm period from 2 days before to 7 days after the storm's closest approach, compared to unexposed days, using generalized linear mixed-effect models. RESULTS: For 1999-2010, 175 study counties had at least one tropical cyclone exposure. Cardiovascular hospitalizations decreased on the storm day, then increased following the storm, while respiratory hospitalizations were elevated throughout the storm period. Over the 10-day storm period, cardiovascular hospitalizations increased 3% (95% confidence interval = 2%, 5%) and respiratory hospitalizations increased 16% (95% confidence interval = 13%, 20%) compared to matched unexposed periods. Relative risks varied across tropical cyclone exposures, with strongest association for the most restrictive wind-based exposure metric. CONCLUSIONS: In this study, tropical cyclone exposures were associated with a short-term increase in cardiorespiratory hospitalization risk among the elderly, based on a multi-year/multi-site investigation of US Medicare beneficiaries ≥65 years.


Subject(s)
Cyclonic Storms , Aged , Hospitalization , Hospitals , Humans , Medicare , United States/epidemiology , Wind
6.
Environ Health Perspect ; 128(10): 107009, 2020 10.
Article in English | MEDLINE | ID: mdl-33112191

ABSTRACT

BACKGROUND: Tropical cyclone epidemiology can be advanced through exposure assessment methods that are comprehensive and consistent across space and time, as these facilitate multiyear, multistorm studies. Further, an understanding of patterns in and between exposure metrics that are based on specific hazards of the storm can help in designing tropical cyclone epidemiological research. OBJECTIVES: a) Provide an open-source data set for tropical cyclone exposure assessment for epidemiological research; and b) investigate patterns and agreement between county-level assessments of tropical cyclone exposure based on different storm hazards. METHODS: We created an open-source data set with data at the county level on exposure to four tropical cyclone hazards: peak sustained wind, rainfall, flooding, and tornadoes. The data cover all eastern U.S. counties for all land-falling or near-land Atlantic basin storms, covering 1996-2011 for all metrics and up to 1988-2018 for specific metrics. We validated measurements against other data sources and investigated patterns and agreement among binary exposure classifications based on these metrics, as well as compared them to use of distance from the storm's track, which has been used as a proxy for exposure in some epidemiological studies. RESULTS: Our open-source data set was typically consistent with data from other sources, and we present and discuss areas of disagreement and other caveats. Over the study period and area, tropical cyclones typically brought different hazards to different counties. Therefore, when comparing exposure assessment between different hazard-specific metrics, agreement was usually low, as it also was when comparing exposure assessment based on a distance-based proxy measurement and any of the hazard-specific metrics. DISCUSSION: Our results provide a multihazard data set that can be leveraged for epidemiological research on tropical cyclones, as well as insights that can inform the design and analysis for tropical cyclone epidemiological research. https://doi.org/10.1289/EHP6976.


Subject(s)
Cyclonic Storms , Environmental Exposure/statistics & numerical data , Health Status , Floods , Humans , United States , Wind
8.
PLoS One ; 15(1): e0227480, 2020.
Article in English | MEDLINE | ID: mdl-31945081

ABSTRACT

We have developed and applied a relatively simple disaggregation scheme that uses spatial patterns of Land Surface Temperature (LST) from MODIS warm-season composites to improve the spatial characterization of daily maximum and minimum air temperatures. This down-scaling model produces qualitatively reasonable 1 km daily maximum and minimum air temperature estimates that reflect urban and coastal features. In a 5-city validation, the model was shown to provide improved daily maximum air temperature estimates in the three coastal cities, compared to 12 km NLDAS-2 (North American Land Data Assimilation System). Down-scaled maximum temperature estimates for the other two (non-coastal) cities were marginally worse than the original NLDAS-2 temperatures. For daily minimum temperatures, the scheme produces spatial fields that qualitatively capture geographic features, but quantitative validation shows the down-scaling model performance to be very similar to the original NLDAS-2 minimum temperatures. Thus, we limit the discussion in this paper to daily maximum temperatures. Overall, errors in the down-scaled maximum air temperatures are comparable to errors in down-scaled LST obtained in previous studies. The advantage of this approach is that it produces estimates of daily maximum air temperatures, which is more relevant than LST in applications such as public health. The resulting 1 km daily maximum air temperatures have great potential utility for applications such as public health, energy demand, and surface energy balance analyses. The method may not perform as well in conditions of strong temperature advection. Application of the model also may be problematic in areas having extreme changes in elevation.


Subject(s)
Environmental Monitoring/methods , Algorithms , Cities , Seasons , Temperature
9.
Sci Rep ; 10(1): 377, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941995

ABSTRACT

Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1ß, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1ß exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1ß exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1ß exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Immunologic Memory/immunology , Inflammation/immunology , Interleukin-1beta/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , DNA Methylation , Gene Expression Regulation, Neoplastic , Humans , Immunologic Memory/genetics , Inflammation/genetics , Interleukin-1beta/genetics , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Phenotype , Tumor Cells, Cultured
10.
Environ Monit Assess ; 191(Suppl 2): 328, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31254078

ABSTRACT

In this study, Moderate Resolution Imaging Spectrometer (MODIS) satellite measurements of aerosol optical depth (AOD) from different retrieval algorithms have been correlated with ground measurements of fine particulate matter less than 2.5 µm (PM2.5). Several MODIS AOD products from different satellites (Aqua vs. Terra), retrieval algorithms (Dark Target vs. Deep Blue), collections (5.1 vs. 6), and spatial resolutions (10 km vs. 3 km) for cities in the Western, Midwestern, and Southeastern USA have been evaluated. We developed and validated PM2.5 prediction models using remotely sensed AOD data. These models were further improved by incorporating meteorological variables (temperature, relative humidity, precipitation, wind gust, and wind direction) from the North American Land Data Assimilation System Phase 2 (NLDAS-2). Adding these meteorological data significantly improved the simulation quality of all the PM2.5 models, especially in the Western USA. Temperature, relative humidity, and wind gust were significant meteorological variables throughout the year in the Western USA. Wind speed was the most significant meteorological variable for the cold season while for the warm season, temperature was the most prominent one in the Midwestern and Southeastern USA. Using this satellite-derived PM2.5 data can improve the spatial coverage, especially in areas where PM2.5 ground monitors are lacking, and studying the connections between PM2.5 and public health concerns including respiratory and cardiovascular diseases in the USA can be further advanced.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring/statistics & numerical data , Particulate Matter/analysis , Public Health/methods , Environmental Monitoring/methods , Particle Size , Remote Sensing Technology/statistics & numerical data , Reproducibility of Results , Seasons , Weather
11.
Environ Health ; 18(1): 35, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30999920

ABSTRACT

BACKGROUND: Regional National Weather Service (NWS) heat advisory criteria in New York State (NYS) were based on frequency of heat events estimated by sparse monitoring data. These may not accurately reflect temperatures at which specific health risks occur in large geographic regions. The objectives of the study were to use spatially resolved temperature data to characterize health risks related to summertime heat exposure and estimate the temperatures at which excessive risk of heat-related adverse health occurs in NYS. We also evaluated the need to adjust current heat advisory threshold and messaging based on threshold temperatures of multiple health outcomes. METHODS: We assessed the effect of multi-day lag exposure for maximum near-surface air temperature (Tmax) and maximum Heat Index derived from the gridded National Land Data Assimilation System (NLDAS) reanalysis dataset on emergency department (ED) visits/ hospitalizations for heat stress, dehydration, acute kidney failure (AKF) and cardiovascular diseases (CVD) using a case-crossover analysis during summers of 2008-2012. We assessed effect modification using interaction terms and stratified analysis. Thresholds were estimated using piecewise spline regression. RESULTS: We observed an increased risk of heat stress (Risk ratio (RR) = 1.366, 95% confidence interval (CI): 1.347, 1.386) and dehydration (RR = 1.024, 95% CI: 1.021, 1.028) for every 1 °C increase in Tmax on the day of exposure. The highest risk for AKF (RR = 1.017, 95% CI: 1.014, 1.021) and CVD (RR = 1.001, 95% CI: 1.000, 1.002) were at lag 1 and 4 respectively. The increased risk of heat-health effects persists up to 6 days. Rural areas of NYS are at as high a risk of heat-health effects as urban areas. Heat-health risks start increasing at temperatures much lower than the current NWS criteria. CONCLUSION: Reanalysis data provide refined exposure-response functions for health research, in areas with sparse monitor observations. Based on this research, rural areas in NYS had similar risk for health effects of heat. Heat advisories in New York City (NYC) had been reviewed and lowered previously. As such, the current NWS heat advisory threshold was lowered for the upstate region of New York and surrounding areas. Enhanced outreach materials were also developed and disseminated to local health departments and the public.


Subject(s)
Acute Kidney Injury/epidemiology , Cardiovascular Diseases/epidemiology , Health Policy , Heat Stress Disorders/epidemiology , Hospitalization/statistics & numerical data , Hot Temperature/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Air Pollutants/analysis , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Environmental Exposure/adverse effects , Female , Humans , Male , Middle Aged , New York/epidemiology , Ozone/analysis , Particulate Matter/analysis , Seasons , Young Adult
12.
Article in English | MEDLINE | ID: mdl-29517416

ABSTRACT

This ecological study aimed to assess the association between long-term exposures to outdoor environmental factors and mortality rate from cardiovascular disease (CVD) in a diverse and spatially distributed population from 3,094 counties within the U.S. (n > 3,780,000 CVD deaths) using satellite-derived data of PM2.5 concentrations, sunlight, and maximum heat index. Multivariable logistic regression analyses were conducted to determine whether PM2.5, sunlight and maximum heat index were related to the odds of the total CVD death rate based on gender, race, and age taking into consideration the confounding risk factors of diabetes, obesity, leisure- time physical inactivity, smoking and socioeconomic status. The study has shown that elevated levels of PM2.5, sunlight and heat long-term exposures are significantly associated with an increase in the odds ratio of the total CVD mortality. The results suggest a 9.8% (95% CI = 6.3% - 13.4%), 0.9% (95% CI = 0.5% - 1.2%), and 0.7% (95% CI = 0.5% - 11.2%) increase in total CVD mortality associated with 10 µg/m3 increase in PM2.5 concentrations, 1,000 kJ/m2 increases in sunlight, and 1 oF increase in heat index, respectively. The odds ratios for the CVD death rate due to long-term exposures of PM2.5, sunlight, and heat index were significantly greater than 1.0 for all categories except for Asians, Hispanics, and American Indians, indicating that the effect of long-term exposures to particulate matter, sunlight radiation, and maximum heat on CVD mortality is trivial for Asians, Hispanics, and American Indians. Among the categories of age, the group of 65 years and older had the highest odds ratios, suggesting that the age group of 65 years and older are the most vulnerable group to the environmental exposures of PM2.5 (OR = 1.179, 95% CI = 1.124 - 1.237), sunlight (OR = 1.047, 95% CI = 1.041 - 1.053), and maximum heat (OR = 1.014, 95% CI = 1.011 - 1.016). The odds ratios of CVD mortality due to the environmental exposures were higher for Blacks than those for Whites. The odds ratios for all categories were attenuated with the inclusion of diabetes, obesity, leisure-time physical inactivity, smoking, and income covariates, reflecting the effect of other medical conditions, lifestyle, behavioral and socioeconomic factors on the CVD death rate besides the environmental factors.


Subject(s)
Air Pollution/analysis , Cardiovascular Diseases/mortality , Environmental Exposure/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Remote Sensing Technology , Adult , Aged , Air Pollutants/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Male , Middle Aged , Remote Sensing Technology/methods , Risk Factors , Socioeconomic Factors , Survival Analysis , Time Factors , United States/epidemiology
13.
Am Heart J ; 197: 94-102, 2018 03.
Article in English | MEDLINE | ID: mdl-29447790

ABSTRACT

Chronic exposure to fine particulate matter (PM2.5) is accepted as a causal risk factor for coronary heart disease (CHD). However, most of the evidence for this hypothesis is based upon cohort studies in whites, comprised of either only males or females who live in urban areas. It is possible that many estimates of the effect of chronic exposure to PM2.5 on risk for CHD do not generalize to more diverse samples. METHODS: Therefore, we estimated the relationship between chronic exposure to PM2.5 and risk for CHD in among participants in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort who were free from CHD at baseline (n=17,126). REGARDS is a sample of whites and blacks of both genders living across the continental United States. We fit Cox proportional hazards models for time to CHD to estimate the hazard ratio for baseline 1-year mean PM2.5 exposure, adjusting for environmental variables, demographics, and other risk factors for CHD including the Framingham Risk Score. RESULTS: The hazard ratio (95% CI) for a 2.7-µg/m3 increase (interquartile range) 1-year mean concentration of PM2.5 was 0.94 (0.83-1.06) for combined CHD death and nonfatal MI, 1.13 (0.92-1.40) for CHD death, and 0.85 (0.73-0.99) for nonfatal MI. We also did not find evidence that these associations depended upon overall CHD risk factor burden. CONCLUSIONS: Our results do not provide strong evidence for an association between PM2.5 and incident CHD in a heterogeneous cohort, and we conclude that the effects of chronic exposure to fine particulate matter on CHD require further evaluation.


Subject(s)
Coronary Disease , Environmental Exposure , Particulate Matter , Aged , Black People/statistics & numerical data , Cohort Studies , Coronary Disease/diagnosis , Coronary Disease/ethnology , Coronary Disease/mortality , Correlation of Data , Demography , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Incidence , Male , Middle Aged , Mortality , Particulate Matter/adverse effects , Particulate Matter/analysis , Risk Factors , Stroke/epidemiology , United States/epidemiology , White People/statistics & numerical data
14.
Environ Sci Pollut Res Int ; 25(8): 7924-7936, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29299867

ABSTRACT

This study aimed to assess the association between exposures to outdoor environmental factors and autism spectrum disorder (ASD) prevalence in a diverse and spatially distributed population of 8-year-old children from the USA (n = 2,097,188) using the air quality index (AQI) of the US Environmental Protection Agency as well as satellite-derived data of PM2.5 concentrations, sunlight, and maximum heat index. Multivariable logistic regression analyses were performed to determine whether the unhealthy AQI, PM2.5, sunlight, and maximum heat index were related to the odds of ASD prevalence based on gender and race and taking into consideration the confounding factors of smoking and socioeconomic status. The logistic regression odds ratios for ASD per 10% increase in the unhealthy AQI were greater than 1 for all categories, indicating that unhealthy AQI is related to the odds of ASD prevalence. The odds ratio of ASD due to the exposure to the unhealthy AQI was higher for Asians (OR = 2.96, 95% CI = 1.11-7.88) than that for Hispanics (OR = 1.308, 95% CI = 0.607-2.820), and it was higher for Blacks (OR = 1.398, 95% CI = 0.827-2.364) than that for Whites (OR = 1.219, 95% CI = 0.760-1.954). The odds ratio of ASD due to the unhealthy AQI was slightly higher for males (OR = 1.123, 95% CI = 0.771-1.635) than that for females (OR = 1.117, 95% CI = 0.789-1.581). The effects of the unhealthy environmental exposures on the odds ratios of ASD of this study were inconclusive (i.e., statically insignificant; p value > 0.05) for all categories except for Asians. The odds ratios of ASD for Asians were increased by 5, 12, and 14% with increased levels of the environmental exposures of 10 µg/m3 of PM2.5, 1000 kJ/m2 of sunlight, and 1 °F of maximum heat index, respectively. The odds ratios of ASD prevalence for all categories, except for Asians, were increased with the inclusion of the smoking covariate, reflecting the effect of smoking on ASD prevalence besides the unhealthy environmental factors.


Subject(s)
Air Pollutants/analysis , Autism Spectrum Disorder/epidemiology , Environmental Exposure/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Remote Sensing Technology , Air Pollution/analysis , Air Pollution/statistics & numerical data , Child , Environmental Exposure/statistics & numerical data , Female , Humans , Male , Particle Size , Prevalence , Risk Factors , United States/epidemiology
15.
J Stroke Cerebrovasc Dis ; 26(8): 1739-1744, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28456465

ABSTRACT

BACKGROUND: Ambient particulate matter has been shown to be associated with declining human health, although the association between fine particulate matter (PM2.5) and stroke is uncertain. METHODS: We utilized satellite-derived measures of PM2.5 to examine the association between exposure and stroke in the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. We used a time-stratified case-crossover design, with exposure lags of 1 day, 2 days, and 3 days. We examined all strokes, as well as ischemic and hemorrhagic strokes separately. RESULTS: Among 30,239 participants in the REGARDS study, 746 incident events were observed: 72 hemorrhagic, 617 ischemic, and 57 of unknown type. Participants exposed to higher levels of PM2.5 more often resided in urban areas compared to rural, and in the southeastern United States. After adjustment for temperature and relative humidity, no association was observed between PM2.5 exposure and stroke, regardless of the lag (1-day lag OR = .99, 95% CI: .83-1.19; 2-day lag OR = .95, 95% CI: .80-1.14; 3-day lag OR = .95, 95% CI = .79-1.13). Similar results were observed for the stroke subtypes. CONCLUSIONS: In this large cohort of African-Americans and whites, no association was observed between PM2.5 and stroke. The ability to examine this association with a large number of outcomes and by stroke subtype helps fill a gap in the literature examining the association between PM2.5 and stroke.


Subject(s)
Black or African American , Brain Ischemia/ethnology , Inhalation Exposure/adverse effects , Intracranial Hemorrhages/ethnology , Particulate Matter/adverse effects , Stroke/ethnology , White People , Aged , Brain Ischemia/diagnosis , Comorbidity , Cross-Over Studies , Female , Health Surveys , Humans , Incidence , Intracranial Hemorrhages/diagnosis , Logistic Models , Male , Middle Aged , Odds Ratio , Particle Size , Prospective Studies , Risk Assessment , Risk Factors , Rural Health , Socioeconomic Factors , Southeastern United States/epidemiology , Stroke/diagnosis , Time Factors , Urban Health , Weather
16.
Article in English | MEDLINE | ID: mdl-28276881

ABSTRACT

This study aimed to assess the association between exposure to fine particulate matter (PM2.5) and respiratory system cancer incidence in the US population (n = 295,404,580) using a satellite-derived estimate of PM2.5 concentrations. Linear and logistic regression analyses were performed to determine whether PM2.5 was related to the odds of respiratory system cancer (RSC) incidence based on gender and race. Positive linear regressions were found between PM2.5 concentrations and the age-adjusted RSC incidence rates for all groups (Males, Females, Whites, and Blacks) except for Asians and American Indians. The linear relationships between PM2.5 and RSC incidence rate per 1 µg/m3 PM2.5 increase for Males, Females, Whites, Blacks, and all categories combined had slopes of, respectively, 7.02 (R2 = 0.36), 2.14 (R2 = 0.14), 3.92 (R2 = 0.23), 5.02 (R2 = 0.21), and 4.15 (R2 = 0.28). Similarly, the logistic regression odds ratios per 10 µg/m3 increase of PM2.5 were greater than one for all categories except for Asians and American Indians, indicating that PM2.5 is related to the odds of RSC incidence. The age-adjusted odds ratio for males (OR = 2.16, 95% CI = 1.56-3.01) was higher than that for females (OR = 1.50, 95% CI = 1.09-2.06), and it was higher for Blacks (OR = 2.12, 95% CI = 1.43-3.14) than for Whites (OR = 1.72, 95% CI = 1.23-2.42). The odds ratios for all categories were attenuated with the inclusion of the smoking covariate, reflecting the effect of smoking on RSC incidence besides PM2.5.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Remote Sensing Technology/methods , Respiratory Tract Neoplasms/epidemiology , Adult , Aged , Female , Humans , Incidence , Logistic Models , Male , Middle Aged , Odds Ratio , Particle Size , United States , Young Adult
17.
IEEE Trans Geosci Remote Sens ; 54(11): 6320-6332, 2016 Nov.
Article in English | MEDLINE | ID: mdl-29367795

ABSTRACT

The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm3 cm-3. These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve.

19.
Int J Environ Res Public Health ; 11(12): 12866-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25514145

ABSTRACT

The lack of progress in reducing health disparities suggests that new approaches are needed if we are to achieve meaningful, equitable, and lasting reductions. Current scientific paradigms do not adequately capture the complexity of the relationships between environment, personal health and population level disparities. The public health exposome is presented as a universal exposure tracking framework for integrating complex relationships between exogenous and endogenous exposures across the lifespan from conception to death. It uses a social-ecological framework that builds on the exposome paradigm for conceptualizing how exogenous exposures "get under the skin". The public health exposome approach has led our team to develop a taxonomy and bioinformatics infrastructure to integrate health outcomes data with thousands of sources of exogenous exposure, organized in four broad domains: natural, built, social, and policy environments. With the input of a transdisciplinary team, we have borrowed and applied the methods, tools and terms from various disciplines to measure the effects of environmental exposures on personal and population health outcomes and disparities, many of which may not manifest until many years later. As is customary with a paradigm shift, this approach has far reaching implications for research methods and design, analytics, community engagement strategies, and research training.


Subject(s)
Environmental Exposure , Environmental Health/methods , Public Health , Health Status Disparities , Humans , Interdisciplinary Communication , Longitudinal Studies , United States
20.
Geocarto Int ; 29(1): 85-98, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24910505

ABSTRACT

We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL
...